Build your future with WUT

Study engineering in the heart of Europe!
Let’s start

Table of content

01 | About 4-7
01 | About | history 8-9
02 | Facts 10-11
03 | Why? 12-15
04 | WUT International 16-17
05 | Facilities & Student Life 18-19
06 | Offer – Studies in English 20-51
07 | How to apply 52-53
08 | Language courses 54-55
09 | Studies in Polish 56-57
10 | Contact us 58
Welcome to Warsaw University of Technology (WUT) – a technical research university with traditions in education dating back to the 19th century. We are a forward-thinking institution where high-quality education meets world-class research and innovation.

Located in the heart of Europe, WUT is not only the oldest, but also the best technical university in Poland. In the ranking of Polish universities, it has taken the first place in its category for nine years.

Our priorities are multi-layered study programmes supported by an advanced scientific research. In response to market demands, we offer an exciting range of professional and technological programmes which prepare students for their future careers. WUT authorities and the entire academic staff do their best to acquaint the students with up-to-date knowledge and skills that are useful in today’s world.
WUT offers programmes at B.Sc., M.Sc. and Ph.D. levels in almost every field of technology – ranging from civil engineering and architecture to optoelectronics, materials, nanotechnology, biotechnology and biomedical technology. We provide also education complementary to technical studies, in the field of economics, social sciences, management, administration and business. For the purpose of teaching and research, WUT owns 38 buildings located in two campuses in Warsaw city centre and one campus in Płock, 320 laboratories as well as other buildings (dormitories, technical infrastructure, sports centres, medical care facilities, etc.).

Our primary aims are to educate responsible professionals, committed to the values of civic life, and to contribute to the development of research and innovation, which are the driving forces of progress in the society of the 21st century.

The mission of the Warsaw University of Technology always remains the same: The knowledge and skills imparted to its students and the scientific studies it conducts must always serve Man and Mankind.
Warsaw University of Technology is the oldest and the most prestigious technical university in Poland. Its origins date back to the 19th century, to the foundation of schools for purposes of military technology and mining.

In 1826, the first Polish multidisciplinary university of technology - the Preparatory School for the Institute of Technology was opened. The School was closed in 1831, after the November Insurrection, and was re-opened as the Emperor Nicolas II University of Technology in 1898, with Russian as the language of instruction. On the day of opening, the university consisted of three faculties: Faculty of Mathematics, Faculty of Chemistry and Faculty of Engineering and Construction. In June 1902, Faculty of Mining was opened. When the World War I broke out in 1914, Russians evacuated the Institute to Rostov and then to Lower Novogrud, taking away all the equipment.

In 1915, Warsaw was occupied by the Germans, who gained popularity among Polish people, as they allowed for the opening of a technical university in Warsaw with Polish as the language of instruction. The grand opening of Warsaw University of Technology was held on 15th November 1915. Classes started at four faculties: Architecture, Chemistry, Civil and Agricultural Engineering, Machine Design and Electrotechnology.

At that moment, an uninterrupted period of development of the University began. Even the World War II, when the University was delegalised and its buildings were destroyed, did not stop its activity. Teaching was continued in form of clandestine and open courses. Scientific research was also conducted, and 20 Ph.D. and 14 D.Sc. thesis were written. Many works by WUT academics contributed to the reconstruction of Poland after the war, and constituted the foundation for the development of science in the future.

After the war, classes started in improvised conditions in January 1945, and by the end of the year all the remaining faculties were re-opened. Old, demolished buildings were rebuilt quickly and the new ones erected. University was expanding - faculties were opened as a result of growing number of academic disciplines and students.

Over all these years, the university has been a leading scientific centre, educating highly qualified staff for all sectors of industry, achieving outstanding research goals and playing a significant role in Polish science and economy.
Facts

QS rankings

QS Best Student Cities 2016

Warsaw 2nd place worldwide in the category Affordability

QS Best Universities by subject

WUT 1st place in Poland in the categories:
- Engineering: Civil & Structural
- Engineering: Electrical & Electronic
- Engineering: Engineering - Mechanical, Aeronautical & Manufacturing

<table>
<thead>
<tr>
<th>19</th>
<th>Faculties</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Study programs offered in English</td>
</tr>
<tr>
<td>36092</td>
<td>Students</td>
</tr>
<tr>
<td>2148</td>
<td>Academic staff</td>
</tr>
<tr>
<td>483</td>
<td>Professors</td>
</tr>
<tr>
<td>2619</td>
<td>Staff in administration, libraries, central institutions</td>
</tr>
<tr>
<td>38</td>
<td>Buildings</td>
</tr>
<tr>
<td>3</td>
<td>Campuses</td>
</tr>
</tbody>
</table>

- **Ranked No. ONE** in Poland among 21 universities of technology.
- According to the last survey of the largest enterprises in Poland, more than 10% of their CEO’s and Presidents are graduates of WUT.
- 90% of our graduates find work within 3 months after graduation.
- The graduates of WUT are the most wanted by Polish employers – far ahead before other Polish universities.

- QS rankings
- QS Best Student Cities 2016
- Warsaw 2nd place worldwide in the category Affordability
- QS Best Universities by subject
- WUT 1st place in Poland in the categories:
 - Engineering: Civil & Structural
 - Engineering: Electrical & Electronic
 - Engineering: Engineering - Mechanical, Aeronautical & Manufacturing
Reasons to study at the Warsaw University of Technology:

- Numerous cultural and entertainment initiatives: concerts, events, festivals, exhibitions.
- Over 100 registered student research groups, organisations and student associations.
- We’re the best! – title of the best Polish technical university every year for 9 years.
- Over 5500 places in halls of residence, rich sports and tourist base.
- Located in the heart of Europe.
- 32 fields of study, including studies with English as the language of instruction.
- 25% of graduates find international employment.
- The highest percentage of graduates who take managerial positions.
- Warsaw University of Technology Development Programme, co-financed by the EU within the framework of ESF, which ensures a high level of education and adaptation of the didactic offer to the demands of the job market.
- High-quality education.
- Competitive costs of living in Poland.
- Thriving Careers Office, which helps students find their first jobs.
- Cooperation with over 180 foreign universities.
- Reasonable prices.
A study conducted in 2016 showed that:

85.5% of WUT alumni see a positive influence of graduation from WUT on their career.

61.6% were employed before their graduation.
36.3% of those currently employed found a job within less than a month and 25.7% did not have to look for a job, because employers found them first.

72.7% of questioned WUT graduates are employed, 7.2% run their own business, 19.2% continue their education in postgraduate studies.

WUT graduates are most often employed in companies from the IT sector – 17%, architecture / civil engineering – 10%, power / electrical engineering – 6.4%.

Employers seek well-rounded graduates who can demonstrate relevant studies, work experience and extra-curricular involvement. Our dedicated Careers Services team supports students and alumni of WUT in their personal and professional development.

Students and graduates are welcome to meet Career Advisors to get information about the Polish labour market, to learn how to prepare an effective CV and Cover Letter and how to get ready for a job interview.

They can also take part in a career coaching session or in training courses focused on skills which are crucial for their further development (e.g.: communication skills, assertiveness, team work, self-presentation, coping with stress, time management and entrepreneurship).

To support the idea of professional networking, the Career Services Team organises career events such as: “Meeting with Employer”, “CareerDate”, local job fairs, trial job interviews, etc.
WUT is international

Warsaw University of Technology puts special emphasis on its students’ and workers’ participation in international exchange programmes and internships, to make studies at WUT open doors to global labour markets.

WUT offers a broad range of international and European exchange programmes for the students, teaching staff and researchers. We participate actively in various European educational programmes: Erasmus+, Erasmus Mundus, ATHENS and many others as well as hold over 30 active bilateral agreements focused on student exchange. WUT’s acclaimed reputation is proved by more than 120 international academic and research cooperation agreements with universities, research centres and high-tech industries from 50 countries all around the world.

Each year around 600 international students from all around the world start their regular full-time studies at WUT. Another 300 international students come to WUT each year as exchange students, while the same number of Polish students are sent as exchange students to partner universities abroad. International students at WUT represent approximately 70 different nationalities. We place great importance on strengthening international knowledge exchange relations and stimulating understanding, tolerance and respect for different ideas and cultures.
STUDENT LIFE

Various student organisations such as Students Union, Erasmus Student Network and International Students Association come up with many initiatives to make sure studying at WUT is not just about lectures and exams.

They organise a great variety of cultural, sports and tourist activities such as concerts, sightseeing tours, trips to different cities and countries, theatre and cinema nights out, sport competitions, sailing or skiing camps, local cuisine dining, and many other social events. They are here for you to help in day-to-day issues and to make sure your life at in Warsaw is easy and fun!

Each new international student can apply for a Mentor – a current student of WUT who will support you during your first days in Warsaw and introduce you to colleagues from the University and dormitory.

DORMITORIES

Warsaw University of Technology offers places in 12 dormitories.

Cost of dormitories varies from €100 to €150 per month.

Most rooms are double or triple, equipped with a little kitchenette.

Most dormitories are located around central campus (max 20 minutes distance by public transportation).
Foundation Year

Starts in: October & February

We know from experience the educational systems around the world vary a lot. We fill this gap by inviting you to Foundation Year, which will prepare you to study at WUT.

Foundation Year is a two semesters introductory course to Bachelor studies at WUT. It is addressed to students who have applied to study at Bachelor level at WUT but did not show sufficient knowledge in the diagnostic Placement Tests in Mathematics and Academic English. Foundation Year is a chance for them to fill the gap between their current level of qualification and knowledge and the level needed to begin Bachelor studies at WUT.

Foundation Year students improve skills and create a solid base in Mathematics, Physics, chemistry, IT which helps them later on during the Bachelor studies at WUT. Foundation Year is a form of entry to the University which later on makes your studies easier and help you to fit in.

Duration: 1 year

600 academic hours divided in the following modules:

- Mathematics
- Physics
- Chemistry
- Introduction to Information Technologies
- Introduction to Engineering
- Academic English
- Polish for Foreigners
- and Polish Culture

Offer – Studies in English
B.Sc. Environmental Engineering
Faculty of Building Structures, Hydro and Environmental Engineering

Duration: 4 years

Starts in: October

The major objective of the Environment Engineering Programmes is to provide a high quality, interdisciplinary knowledge and skills to people searching for solutions to the environmental problems of today and the future, concerning water resources protection, air pollution control, solid waste management, environmental impact assessment, renewable energy systems and others.

At the undergraduate level of Environmental Engineering, principal engineering skills are taught together with achievement of knowledge of basic subjects such as mathematics, physics, chemistry and biology. All the students of the Faculty are given general knowledge of processes in major constituents of environment as well as in basic environmental technologies, e.g.: atmospheric physics and chemistry, air pollution control, hydrology, water resources and water protection, water and sewage processing, groundwater, soil protection and land reclamation, waste management. Modern methods of natural resources protection through the use of best available technologies and production practices, recycling and reuse of wastes are thoroughly taught. In addition, environmental aspects of the energy production and use are stressed throughout all engineering courses. Students are also familiar with some global environmental issues such as climate change, ozone layer depletion, land use changes and environmental issues such as climatic change, global climate change, ozone layer depletion, land use changes and environmental issues such as climatic change, global climate change, and economic issues.

Examples of modules:
- Ecology
- Information Technology
- Strength of Materials and Structural Mechanics
- Material Engineering
- Fluid Mechanics
- Civil Engineering and Constructions
- Statistics in Environmental Sciences
- Hydrology
- Meteorology
- Soil Protection
- Engineering Hydrology and Hydrogeology
- Environmental Chemistry
- Air Pollution Control
- Solid Waste Management
- Water Resources Protection
- Municipal and Industrial Wastewater Treatment
- Renewable Energy Systems

M.Sc. Environment Protection Engineering
Faculty of Building Structures, Hydro and Environmental Engineering

Duration: 1.5 years

Starts in: October & February

The Graduate Programme in Environment Protection Engineering focuses on research and engineering activities which aim at mitigating the negative impacts of human activity on the environment. It is primarily addressed to the students of the undergraduate programme in environmental engineering or other undergraduate engineering programmes, such as civil, mechanical or chemical engineering.

Broad knowledge and the system approach skills are acquired, including environmental law and economy, impact analysis, risk analysis and decision making, mathematical modelling, environmental quality assessment and management, etc. These are linked either to national or the EU perspectives. Programme participants broaden their background in environmental physics, chemistry and biology, familiarize with techniques of environmental data analysis and mathematical modelling, and develop practical skills in designing and governing environment protection measures. They receive training in a wide range of environmental technologies such as water and wastewater treatment technology, air pollution control, water and soil quality control, solid and hazardous waste management, environmental aspects of energy production and use. In order to develop teamwork and collaborative skills, the professional knowledge is supplemented by training in social communication.

Examples of modules:
- Computational Methods in Environmental Engineering
- Environmental Physics
- Monitoring of Environment
- Reliability and Safety of Engineering Systems
- Applied Climatology
- Irrigation and Drainage
- Geostatistics
- Heat and Mass Transfer
- Pro-ecological Technologies
- Global Climate Change
- Alternative Energy Sources
- Introduction to Remote Sensing of Environment

Graduate Profile – job opportunities:

The undergraduate programme in Environmental Engineering aims at general engineering practice related to the protection of environment and sustainable development. Students are trained for positions as consulting engineers, environmental affairs engineers for industrial and transportation companies, land reclamation and waste management companies, water and sewer companies, engineering design studios and consulting companies, civil servants in national, regional and local environmental agencies and services, environmental inspection and monitoring units.

At Masters level, the programme in Environment Protection Engineering aims at research and engineering activities concerning the mitigating of negative impacts of human activity on the environment. Graduates receiving the Master of Science in Engineering degree will be able to develop their individual/independent professional practices, carry out environmental impact assessment, design and execute or supervise environment protection measures in companies, maintain monitoring networks and provide expertise to local and regional authorities for decision making.
M.Sc. Computer Science

(specialisation: Computer Systems and Networks)

Faculty of Electronics and Information Technology

Duration: 2 years

Starts in: October & February

The programme requires coursework in one specialisation and thesis preparation. Each student works with a supervisor from the faculty. The professor helps the student plan an academic programme of coursework compatible with the degree requirements and the student’s educational objectives. The advisor also supervises the research and the thesis preparation. The thesis is based on a research project that partly involves the original material.

Graduates from the Computer Systems and Networks specialisation will be equipped with comprehensive qualifications in the area of computer science basics, including basic knowledge of information processing, as well as the area of algorithms and system modelling. They have knowledge of modern operation systems, programming languages, databases and various software applications. Graduates are self-reliant in the design, implementation and operation of complex computer systems and networks.

Examples of modules:
- Discrete Random Processes
- Pattern Recognition
- Evolutionary Algorithms
- Digital Signal Processor Architecture and Programming
- Parallel Numerical Methods
- Distributed Computing and Systems
- Data Mining
- Intelligent Information Systems
- Image and Speech Recognition

Graduate profile – job opportunities

The graduate is able to:
- design IT systems and manage the existing systems, connect computers with external equipment, handle the use of computer networks, configure and administer computer networks;
- design IT systems applying system analysis methods as well as modelling and prototyping methods with the use of database approach, knowledge base and expert systems;
- create software for real-time control systems and software for intelligent computational and expert systems, as well as decision support and optimisation systems;
- create computer games as well as system and utility software for various types of equipment related to digital technology.

Career opportunities:
- companies and institutions using computer networks and systems, e.g. banks, telecommunications operators;
- companies and corporations manufacturing system and utility software;
- companies implementing automatic control systems and production management;
- universities, research institutes, design bureaus and other institutions engaged in IT systems designing;
- consulting companies and companies implementing and integrating various IT solutions.

B.Sc. Computer Science

(specialisation: Computer Systems and Networks)

Faculty of Electronics and Information Technology

Duration: 4 years

Starts in: October & February

The field of study encompasses information technology, control and robotics, electronics and telecommunications. The program covers great varieties of subjects from diverse technology fields. The first two years are common for students of Computer Science and Telecommunications programs and constitute the area of Information and Communications Technology.

Graduates from Computer Systems and Networks specialisation have excellent qualifications in the area of computer science basics, including basic knowledge of information processing, as well as the area of algorithms and system modelling and various aspects of computer engineering and applications. They are acquainted with the methodologies of object programming, CASE-tools-aided design, system analysis, system modelling and prototyping. They have knowledge of modern operation systems, programming languages, databases and various software applications. Graduates are self-reliant in the design, implementation and operation of complex computer systems and networks.

Examples of modules:
- Algorithms & Programming
- Circuits & Systems
- Computer Systems
- Telecommunications
- Operating Systems
- Graphical User Interfaces
- Data Bases
- Cryptography and Information Security
- Software Engineering
- Compiling Techniques
- Introduction to Artificial Intelligence

Examples of modules:
- Discrete Random Processes
- Pattern Recognition
- Evolutionary Algorithms
- Digital Signal Processor Architecture and Programming
- Parallel Numerical Methods
- Distributed Computing and Systems
- Data Mining
- Intelligent Information Systems
- Image and Speech Recognition
B.Sc. Telecommunications
Faculty of Electronics and Information Technology
Duration: 4 years
Starts in: October & February

The field of study encompasses information technology, control and robotics, electronics and telecommunications. The program covers great varieties of subjects from diverse technology fields. The first two years are common for students of Telecommunications and Computer Science programs and constitute the area of Information and Communications Technology.

Graduates of the Telecommunications specialisation are prepared for jobs related to the design of digital telecommunication circuits, digital processing of telecommunication signals (coding and compression of speech and image signals, digital modulations, redundant coding), design and operation of telecommunication (transmission, commutation and data-communication) systems, as well as design of telecommunications (telephone, data-communication and integrated networks). Students acquire the ability to solve system problems that require comprehensive knowledge in the areas of telecommunications and computer science, combined with considerable non-engineering knowledge.

Examples of modules:
- Algorithms & Programming
- Circuits & Systems
- Computer Systems
- Telecommunications
- Signal Processing & Coding in Telecommunications
- Wireless Systems and Networks
- Access and Backbone Systems and Networks
- Cryptography and Information Security
- Switching and Routing
- Communication Protocols
- Satellite Communication Systems

M.Sc. Telecommunications
Faculty of Electronics and Information Technology
Duration: 2 years
Starts in: October & February

The programme requires coursework in one specialisation and thesis preparation. Each student works with a supervisor from the faculty. The professor helps the student plan an academic programme of coursework compatible with the degree requirements and the student’s educational objectives. The advisor also supervises the research and the thesis preparation. The thesis is based on a research project that partly involves the original material.

Graduates of the Telecommunications specialisation possess knowledge and skills necessary for the design, implementation and operation of telecommunication circuits, equipment and systems based on modern technologies. They study, in particular, the methods and techniques for transmission of information by means of radio waves using the potential of digital techniques, computers and other advanced technologies, as well as the methods of image and sound processing. Students acquire also skills necessary to solve system problems which require comprehensive knowledge in the areas of telecommunications and computer science, combined with some non-engineering knowledge.

Examples of modules:
- Discrete Random Processes
- Computational Electromagnetics for Telecommunication
- Queuing Theory
- Adaptive Image Recognition
- Techniques and Algorithms for Signal Processing
- Adaptive Signal Processing
- IP Multimedia Subsystem
- Digital Communications
- Optical Fiber Transmission

Graduate profile:
-job opportunities:
The graduate is able to:
- design radio, television and electro-acoustic equipment, both for studios and general use, as well as to design radio location and radio navigation systems;
- process images and sounds and design multimedia systems with particular attention paid to Internet applications;
- create specialised software used in the telecommunications sector;
- design systems and networks of wire telecommunications (telephone, data transfer and integrated systems) as well as mobile systems (including satellite ones) and manage their operation;
- create infrastructure supporting management of telecommunications networks and services which combine various specialised IT systems.

Career opportunities:
- operators of landline and mobile networks;
- suppliers of services and manufacturers of telecommunications equipment and software;
- TV broadcasters and producers; radio broadcasters and recording studios;
- telecommunications and IT departments of banks, state administration and other large companies;
- research and implementation centres of the world’s telecommunications concerns;
- small telecommunications and IT companies.
M.Sc. Computer Science

(specialisation: Artificial Intelligence)

(specialisation: Business Intelligence Systems Development)

Faculty of Mathematics and Information Science

Duration: 1,5 (standard)

or 2 years (extended - supplemented by one semester, dedicated for students who require additional preparation)

Starts in: October & February

These Master programmes cover modern mathematics and tackle the latest trends in computer science. Studies involve a lot of individual work. Each student chooses a scientific advisor from among academic and research staff. Last semester is devoted mainly to M.Sc. thesis preparation, which is usually highly related to the on-going faculty research.

Students of Artificial Intelligence specialisation gain a deep theoretical and practical comprehension of artificial intelligence and computational intelligence methods, neural networks and knowledge representation.

Students of Business Intelligence Systems Development specialisation become experts designing and programming of business intelligence systems (SAS) and statistical systems using advanced computational methods.

Examples of modules:

- High performance computing
- Advanced algorithms
- Software testing
- Knowledge representation and reasoning
- Neural networks
- Programming in logic and symbolic programming
- Image and speech recognition
- Calculus - advances
- Data compression

Graduates can use IT tools to write computer programs, develop and verify IT projects including advanced statistical applications which require modelling and deepened comprehension of computer science notions. Graduates are well-prepared to work in companies of diverse business profiles which make use of advanced IT solutions, in particular in companies that develop software, IT consultancy companies, in the advanced technologies sector and the financial institutions sector.

Examples of modules:

- Programming (C, C++, Java, C#, .NET and other)
- Discrete mathematics
- Introduction to digital systems
- Algorithms and data structures
- Differential equations
- Operating systems
- Data transmission
- Databases
- Computer networks
- Multilayer application development
- Software engineering
- Artificial intelligence fundamentals

B.Sc. Computer Science

Faculty of Mathematics and Information Science

Duration: 3,5 years

Starts in: October

For the first three semesters, the programme covers the basics of mathematics, which allows for the effective learning of computer science and programming techniques in the next semesters. In this period, students receive basic information on calculus, linear algebra and geometry, discrete mathematics, logic, numerical methods, and principles of electronics. Additionally, during the first semesters, introduction courses to structural and object-oriented programming, algorithms and data structures as well as operating systems are offered. Until the fourth semester, classes are joint for all students. From the fifth semester, students have the opportunity to choose elective courses which cover both theoretical and practical aspects of computer science. The last, seventh semester is mainly devoted to team project and thesis preparation.

Students are thoroughly educated in mathematics and acquire the theoretical basics of computer science, which enables them to widen his or her knowledge in the rapidly changing field of computer science. Graduates can use IT tools, programme in various programming languages, and operate IT equipment and software. They can work as part of a team to develop and implement IT projects, as well as verify component elements of computer information systems in compliance with a given specification. Graduates can administer medium-scale computer information systems and computer networks.

Examples of modules:

- Programming (C, C++, Java, C#, .NET and other)
- Discrete mathematics
- Introduction to digital systems
- Algorithms and data structures
- Differential equations
- Operating systems
- Data transmission
- Databases
- Computer networks
- Multilayer application development
- Software engineering
- Artificial intelligence fundamentals

Graduates can use IT tools to write computer programs, develop and verify IT projects including advanced statistical applications which require modelling and deepened comprehension of computer science notions. Graduates are well-prepared to work in companies of diverse business profiles which make use of advanced IT solutions, in particular in companies that develop software, IT consultancy companies, in the advanced technologies sector and the financial institutions sector.

Students of Artificial Intelligence specialisation gain a deep theoretical and practical comprehension of artificial intelligence and computational intelligence methods, neural networks and knowledge representation.

Students of Business Intelligence Systems Development specialisation become experts designing and programming of business intelligence systems (SAS) and statistical systems using advanced computational methods.

Examples of modules:

- High performance computing
- Advanced algorithms
- Software testing
- Knowledge representation and reasoning
- Neural networks
- Programming in logic and symbolic programming
- Image and speech recognition
- Calculus - advances
- Data compression
B.Sc. Electric and Hybrid Vehicles Engineering
Faculty of Automotive and Construction Machinery Engineering

Duration: 3.5 years

Starts in: October

This field of study is dedicated to those who want to become engineers and meet the challenges of modern designing, operating and servicing of state-of-the-art recently emerged electro-mechanical vehicles, which have been dominating the ecologically conscious automotive market. The programme provides students with multidisciplinary knowledge in complex technical far-transportation structures with systems of energy recuperation and accumulation. Analysis of fundamental physical and chemical processes, selection of nonconventional materials and control methods are taught in classes and laboratories. A novel approach to realisation of the educational offer gives the graduate vital skills in the engineering of ecologically friendly electric and multi-source hybrid automobiles, including special and autonomic vehicles.

Examples of modules:
- Mechatronics Systems Design
- Computer Systems in Mechatronics
- Mechatronic Sensor and Actuator Systems
- Construction of Autonomous Vehicles
- Automation Systems
- Ionics and Photovoltaics
- Ultralight Vehicle Bodies
- Vehicle Structures and Crashworthiness
- Navigation of Autonomous Vehicles
- Vehicle Information Systems
- Energy Harvesting in Vehicles
- Diagnosis of Electric and Hybrid Vehicles
- Advanced Control of Electric and Hybrid Drives
- Vehicle Recycling

Graduate profile – job opportunities:

The graduate is able to:
- build and analyse mathematical models of powertrain components, combine them in a computational model of a drive structure and conduct simulation studies to determine the parameters of electric or hybrid powertrains;
- design, test and troubleshoot simple multi-source energy-accumulating systems, intended for a variety of applications with the use of appropriate design and IT tools.

Career opportunities:
- The automotive industry, especially in the area of electric and hybrid drives;
- The Industry of working, road and handling machines in the above area;
- Other sectors of the economy (transport, energy) – green and energy-efficient technologies;
- Work related to designing, manufacturing, maintenance and supervision.

Graduate Profile – job opportunities:

Depending on the profile of the studies, graduates may find employment in companies with diverse business profiles, in particular creating software, IT consultancy companies, in the advanced technology sector or in financial institutions. They can work as software designers and creators, managers of programming teams, statistical systems developers, business intelligence systems modellers and programmers, SAS advanced programmers and SAS platform administrators, information system administrators, computer network designers and administrators, specialists in data protection and information systems security or managers of projects related to the application of computational methods in various disciplines.

Career opportunities:
- IT companies and centres using and creating advanced IT solutions;
- IT advisory services in companies of various profiles of operation;
- self-employment within the scope of the studied subjects;
- research and development centres.
M.Sc. Electrical Engineering

Faculty of Electrical Engineering

Duration: 1.5 years

Starts in: October

Students of M.Sc. Electrical Engineering acquire comprehensive qualifications and knowledge in the area of: power system (planning, optimisation and control), electrical power quality, electromagnetic compatibility, electromechanical drive systems, electrical traction, measurement systems (hardware and software), intelligent electrical installations and IT (artificial intelligence in power engineering, computational methods and algorithms, microprocessor engineering).

Examples of modules:
- Electrical Measurement of Non-Electrical Parameters
- Electromechanical Drive Systems
- Energy Conversions
- Selected Problems of Circuit Theory
- Short Circuits in Power Systems
- Numerical Methods in Technics

Graduate profile – job opportunities:

The graduate is able to:
- design and construct electrical circuits, systems and equipment;
- use highly complex electrical machines and equipment;
- design and use industrial equipment processing electric energy;
- apply electric circuits and equipment in production processes;
- design industrial plants supply systems and networks.

Career opportunities:
- electrical engineering companies;
- construction and design bureaus for electrical equipment;
- distribution and commercial companies dealing with electric equipment and controls;
- professional power engineering sector;
- design and installation companies.

B.Sc. Electrical Engineering

Faculty of Electrical Engineering

Duration: 4 years

Starts in: October

The area of study encompasses electrical materials technology, electrical measurements, circuits and systems, electromagnetic field, electrical machines, electrical power engineering, converter drives control, high voltage technology and IT. The programme embraces a great variety of subjects. Two specialisations are currently offered: Control and Computer Engineering and Electrical Power Engineering.

Examples of modules:
- CAD Methods
- Computer Science
- Circuits and Systems
- Mechanical Engineering
- Mathematics
- Electrical Measurements Instrumentation and Signal Transmission
- Electronics
- Numerical Methods
- Electrical Machines
- Introduction to Electrical Power Engineering
- Microprocessor Engineering
- High voltage technology
- Converter Drives Control
- Electrical Machines in the power engineering and automation
- Electric Traction
M.Sc. Mechatronics
(specialisation: Photonics Engineering)

Faculty of Mechatronics
Duration: 1.5 years
Starts in: October & February

The programme of the second cycle full-time studies in the field of Photonics Engineering specialisation is developed as a high-quality educational offer in the area of modern optics, photonics and optomechatronics. After graduation students will pursue their professional career in the diverse areas of photonics, especially: mathematical and numerical modelling, design of opto-mechanical systems, image processing and recognition, optical methods of testing, diffraction optics and microoptics. The profile of a graduate corresponds with the challenges of the 21st century. The unique knowledge, delivered during courses, enables the graduate to pursue a promising career as engineers and researchers in modern fields of science, technology and industry, which are dynamically developing.

Examples of modules:
- Design of Optical Systems
- Diffraction and Fourier Optics
- Image Processing and Recognition
- Medical Optics
- Optical microsystems
- Optical full-field measurements
- Mechatronics Systems
- Numerical Methods in Optical Techniques

Graduate profile – Job opportunities

Career opportunities:
- operation maintenance departments at production plants,
- quality control departments at production plants,
- construction and design bureaus;
- representatives of international concerns manufacturing precise equipment.

B.Sc. Mechatronics
(specialisation: Photonics Engineering)

Faculty of Mechatronics
Duration: 3.5 years
Starts in: October

The profile of the first cycle full time studies within Photonics Engineering was developed to provide educational offer in the area of optomechatronics, especially in building of optical and optoelectronic equipment and its applications in opto-numerical methods of inspection, e.g. holographic cameras, spectrometers, multimedia devices and multi-functional interferometers for different scale objects testing (from microelements of MEMS/MOEMS type up to large engineer- ing structures). Students are equipped with knowledge on fundamentals of engineering and basis for designing, manufacturing, testing and operating optomechatronic systems and devices. The graduates are prepared for work in the industry and SMEs and ready to tackle engineering problems. They can also support services based on optomechatronics equipment used in the fields such as multimedia, medicine, lighting, metrology and others.

Examples of modules:
- Material Engineering and Computer Techniques
- Engineering Graphics
- Fundamentals of Electronics and Electrotechniques
- Strength of Material
- Design of Fine Mechanism (CAD) and Optomechatronics
- Basics of Photonics
- Instrumental Optics
- Optoelectronics Technology and Image Processing
- Laser Techniques
- Machine Vision
- Fiber Optics Technology (Telecommunications and Sensors)
- Photonics Devices and Systems
- Lighting Technology
M.Sc. Management and Production Engineering
(specialisation: Global Production Engineering and Management)

Faculty of Production Engineering
Duration: 2 years
Starts in: October & February

The idea of the programme is based on an extensive research done among top managers in industrial multinational enterprises and internationally operating SMEs. The results of the research indicated a growing demand for graduates with integrated knowledge of production engineering and production management, supported by the ability to operate within multinational teams and within the global business environment.

Students of GPEM receive education in both organization and management, economy, legal and social science, as well as technical sciences. They acquire practical skills in design of business processes using state-of-art software. They also learn the basics of programming and algorithmisation of organizational issues in enterprises, development of database application for management support, preparation of investment projects evaluation in the field of implementation of management information systems such as ERP, CRM and BI, and the design of such systems.

Examples of modules:
- Quality Engineering & Management
- ICT & CAx in Production
- Design & analysis of manufacturing systems
- International Industrial Marketing
- Modelling of Production Systems and Supply Chains
- Maintenance Management
- International Trade, Business & Economics
- Industrial Technologies
- Project, Innovation, Technology, Engineering & PLC Management
- Techniques of Industrial Engineering
- Global Operations Strategy and Logistics & SCM
- International Accounting & Finance for Production Engineers

Graduate profile – job opportunities:
The programme is intended to provide advanced knowledge and skills to candidates planning to start their professional careers in global industrial companies as production and logistics managers, process engineers in engineering departments or in maintenance departments. The graduates are also well prepared to become top level staff (including owners) of small and medium industrial enterprises.

- Design, analysis and management of complex manufacturing systems
- Polish and foreign consulting companies implementing ERP, CRM, BI systems
- Process engineers in manufacturing companies
B.Sc. Aerospace Engineering
Faculty of Power and Aeronautical Engineering
Duration: 3.5 years
Starts in: October

During the first year studies focus on mathematics, physics, mechanics, thermodynamics and computer science. The core subjects for the second year are fundamentals of mechanical design, control engineering and foreign language. Students of aerospace program learn also their specialization subjects like aeronautics and astronautics. The third year is again more specialized. Aerospace program focuses on aeronautical systems, mechanics of flight, materials for aerospace technologies, propulsion systems and rotorcrafts. The last half of the year in 3.5 years program is devoted to the supervised work on engineering diploma thesis.

Graduates from Aerospace Engineering demonstrate expertise required in modern aerospace industry, in the airlines and in other industries applying novel technologies. They are also prepared to respond to the needs of research institutions in the field of research, design, development and maintenance of aircraft and spacecraft. Besides of basic electronics and information sciences including CAD, they possess solid knowledge in mechanics, thermodynamics - together with understanding of combustion processes - materials and manufacturing technologies which are used in aerospace industry.

Examples of modules:
- Electric Circuits
- Mechanics of structures
- Thermodynamics
- Basics of automation and control
- Fluid mechanics
- Machine design
- Introduction to aerospace
- Materials in aerospace technology
- Integrated CAD/CAM/CAE system
- Mechanics of flight
- Aircraft Engine Design
- Aircraft Design
- Aeronautical System
- Risk and reliability in aviation
- Rotorcraft Aeromechanics

M.Sc. Aerospace Engineering
Faculty of Power and Aeronautical Engineering
Duration: 1.5 years
Starts in: October & February

At M.Sc. Aerospace Engineering students gain knowledge about recent achievements in the field and the methods and tools that prepare them for taking management positions in industry, or to undertake the research activity. The third semester of the 3-semester-study is devoted to the solution to a research problem. The problem statement and solution are put into the master diploma thesis.

Students of the Aerospace Engineering program are provided with a knowledge allowing for scientific research and design, optimisation, modernisation as well as maintenance of flying vehicles. Graduates are well prepared to work for aviation engine design offices, research laboratories and maintenance centres as well as to deal with all types of internal combustion engines (automobile, railway and power plant engines).

Examples of modules:
- Advanced Computational Fluid Dynamics
- Aircraft systems laboratory
- Composite Materials in Aerospace
- Control in Aerospace
- Dynamics of Flight
- Heat Transfer in Aerospace
- Physics of the Atmosphere
- Mechanics of Thin-Walled Structures
- Attitude and navigation systems
- Aircraft maintenance management
- Fatigue and aircraft diagnostic systems
- Structural analysis of aero engines
- Signals and identification methods

Graduate Profile - Job opportunities:
The graduate is able to:
- design and construct the main assemblies of planes, helicopters, rockets and satellites with the use of modern engineering tools;
- analyse and modify the main assemblies of planes, helicopters, rockets and satellites.

Career opportunities:
- domestic and international companies of the aviation and space sector;
- aviation and space sector research and development centres;
- design and production companies implementing advanced structural, material and IT technologies.
The objectives of the study is to create the solid fundamental engineering knowledge during the first year of the study, then learn deeply the problems devoted to the subject of the study. Graduates are prepared to work in industry and to solve engineering problems. They have wide knowledge in the area of thermal engineering, electrical power engineering, information technologies, and economics. The programme provides them with knowledge and skills that are important for sustainable development of energy sources, ecological production of energy, transmission, and distribution. Students are prepared for creative work within the area of design, commissioning, and operation of power systems, as well as energy production, conversion, transmission and distribution.

Examples of modules:
- Mechanics of structures
- Thermodynamics
- Basics of automation and control
- Machine design
- Fluid mechanics
- Heat transfer
- Theory of heat machines
- Electric Power Systems
- Combustion and Fuels
- Measurements and technique of experiment
- Energy systems
- Electric Power Systems
- Energy sources and conversion
- Internal Combustion Engines
- Steam Boilers
- Turbines
- Power Engineering Machines and Systems

The third semester of the 3-semester-study is devoted to the solution to a research problem. The problem statement and solution are put into the master diploma thesis.
M.Sc. Power Engineering
(specialization: Nuclear Power Engineering)
Faculty of Power and Aeronautical Engineering
Duration: 2 years
Starts in: October & February

Graduate profile
- job opportunities:

The graduate is able to:
- independently solve problems within engineering processes performance, as regards energy processing, starting from basic power engineering equipment and system, through analysis of their operation, operation of the same, and ending with economic matters or proper selection of equipment and systems;
- use the knowledge of the issues related to sustainable country development and the growing role of problems related to environmentally friendly generation, transfer and distribution of energy.

Career opportunities:
- Energy companies (including generation, distribution and sale of electricity)
- CHP stations and municipal power companies, public administration related to energy
- Suppliers of equipment and services for the energy sector (foreign and Polish companies)
- Energy sector companies including construction of power facilities and installation of equipment

Examples of modules:
- Elements of Nuclear Physics
- Nuclear Reactor Physics
- Contemporary Nuclear Reactor Systems
- Nuclear Fuels and Fuel Cycles
- Nuclear Instrumentation and Control
- NPP Safety
- NPP Operation and Maintenance
- Gen IV Nuclear Reactor Systems
- Thermonuclear Synthesis
- Nuclear Energy and International Security
- Modelling and Simulation

M.Sc. Robotics
Faculty of Power and Aeronautical Engineering
Duration: 2 years
Starts in: October

Graduate Profile
- Job opportunities:

The graduate is able to:
- Design and build manipulators and robots for various purposes with the use of modern engineering tools
- Solve tasks of analysis and synthesis of robot control systems including drives
- Make professional use of achievements in industrial and non-industrial robotics (including medical and rehabilitation robotics) and micro-robotics
- Make use of computer hardware in design and automatic control systems, computer and controller programming and combine them with a variety of measuring instruments and actuating devices

Career opportunities:
- Companies using automation and robotics equipment for various applications, including medical applications
- Development and consulting centres for design and analysis of mechanical and mechatronic systems
- Companies involved in the design and manufacture of biologically inspired structures in a variety of areas, including medicine and labour protection
- Scientific research centres dealing with the dynamics of mechanical systems.

Examples of modules:
- Advanced mechanical design
- Dynamics of multi-body systems
- Biomechanics
- Bio-robotics
- Biomechanics
- Dynamics of multi-body systems
- Biomechanics
- Bio-robotics
- Biomechanics
- Dynamics of multi-body systems
- Biomechanics
- Bio-robotics
- Biomechanics
- Dynamics of multi-body systems
- Biomechanics
- Bio-robotics
B.Sc.
Civil Engineering
Faculty of Civil Engineering
Duration: 4 years
Starts in: October

Civil engineering deals with construction of such facilities as buildings, bridges, tunnels, airports, railways, highways and environmental systems. Planning, design, construction/reconstruction, operation and maintenance of these facilities are generally carried out by civil engineers. Education in the area defines knowledge and skills in execution, operation and modernisation of buildings and civil engineering structures, cost pricing, and knowledge of legal and administrative issues in the construction industry, as well as skills in computer methods supporting design and investment process.

After completing the 3rd year of the programme students choose specialisation for the 4th year. Depending on the number of students interested in particular field of study two of the following specialisations are available each year: Civil Engineering Structures, Construction Engineering and Management, Energy-saving Construction, Transportation Engineering.

Examples of modules:
- Building Materials
- Theoretical Mechanics
- Technical Drawing
- Strength of Materials
- Mechanics for Structures
- Technology and Organization of Building Works
- Transportation Engineering
- Soil Mechanics and Geotechnical Engineering
- Concrete Structures
- Metal Structures
- Bridge Engineering
- Underground Structures
- Electrical and Sanitary Installations
- Hydraulics and Hydrology

to prepare students for professional interaction with people,
- a core of basic civil engineering subject areas, including courses in structures, surveying, transportation, materials science, management and environment,
- integrated sets of optional and elective courses in areas selected by students.

M. Sc.
Civil Engineering Structures
Faculty of Civil Engineering
Duration: 1.5 years
Starts in: October

A three-semester programme and preparation of the final M.Sc. thesis under the guidance of the Faculty supervisor allows students to acquire comprehensive knowledge and qualifications in the area of civil engineering. Graduates of the Master programme can handle design problems with a high degree of complexity and investment projects of a unique nature. They are prepared to carry out research projects and can manage design projects or run construction companies. Graduates of Civil Engineering programme are offered engineering and administrative posts in industry, construction, research, government and consulting companies.

Examples of modules:
- Engineering of Building Materials
- Theory of Elasticity and Plasticity
- Design Methodology of Construction Processes
- Computer Methods for Structural design
- Mechanics of Structures
- Concrete, Metal, Timber Structures
- Reliability of structures
- Computer-aided design of structures

Graduate Profile - Job opportunities:
The graduate is able to:
- apply material strength principles and structural mechanics; formulate, construct and apply calculation models for the basic engineering structures; design basic structures and building elements for residential, municipal, industrial buildings and transport infrastructure;
- manage construction teams and companies with regard to execution and supervision of any type of civil structures; knows how to organise a building process, calculate costs and arrange legal and administrative affairs in the construction business;
- organise and supervise the production of building elements; knows the technology of manufacturing, selection and application of building materials;
- create and read technical drawings, read cartographic and site surveying opinions;
- apply modern computer techniques to aid designing as well as use modern technologies in the engineering practice.

Career opportunities:
- design and development companies; construction companies, construction supervision duties;
- building materials industry, concrete batching plants, companies manufacturing building and structural elements;
- central and local government administration agencies in charge of construction and architecture.
M.Sc. Photonics
Faculty of Physics

Duration: 2 years

Starts in: October & February

Photonics is the science and technology of generating and controlling photons. The science of photonics includes the emission, transmission, deflection, amplification, manipulation, detection and utilization of light. In principle it enables the use of light in different areas that are essential to society and economy. Photonics is of great importance in many industrial sectors and areas that use photonic technology for research, data- and telecommunications, business, education, security and defense, imaging, medicine, process control, biotechnology, quantum computation, energy generation, environmental sensing, etc.

The two-year Master program in the area of Photonics provides students a unique opportunity to become familiar with the applications of light in fields that range from fundamental research to technological applications. Graduates of the program represent excellent knowledge in mathematics, physics, electronics, and information technologies and have high level of qualifications to work for various institutions. During studies they may learn both: theory and practice, and they are following the core photonic courses as Electromagnetism Theory, Principles of Optics, Fourier Optics and Nonlinear Optics, as well as Optical Imaging Theory. The Faculty offers also advanced and specialized courses in optics and photonics covering all relevant fundamental research and applications including training in lasers, optical and photonic crystal fibers, liquid crystal photonics, optical waveguides, displays, holography, optoelectronics, optical sensing, data and telecommunication, terahertz technology, new material technology, ultra-fast and nonlinear optical phenomena, photovoltaics. Photonics course offers advanced laboratories.

Examples of modules:

- Photonics
- Optoelectronics
- Principles of Optics
- Fourier Optics
- Wave Optics
- Nonlinear Optics
- Theory of Optical Imaging
- Quantum Photonics
- Optical Information
- Solid State Optics
- Laser Physics and Technology
- Photonic Systems and Devices
- Theory of Waveguides
- Fiber Technology
- Photonic Crystal Fibers
- Liquid Crystal Photonics
- Displays Technology
- Holography
- Photovoltaics

Graduate profile – job opportunities:

Graduates are expected to be offered a broad range of future opportunities, including research in high technology companies, in particular photonics related companies; research in academic laboratories and research institutes (possibly in PhD context); development of new photonic products in industry; technical support in a company for its products or services; technical marketing and sales.

- Companies using modern optoelectronic and photonic technologies
- Companies from the information technology and data communication sector.
- Research and development laboratories of high-tech companies.
- Research laboratories of universities, research institutes and industry.
M.Sc. Architecture
(specialisation: Architecture for Society of Knowledge)

Faculty of Architecture
Duration: 2 years
Starts in: October

Architecture for Society of Knowledge is a new professional programme focused on the digital design and crucial aspects of architecture and urban planning. Students can explore contemporary design practices as well as media and digital technologies applied in the design and construction of the 21st century city.

ASK is dedicated to those who wish to extend their practical understanding of contemporary architecture and urban planning. The programme covers digital media in design, prototyping with computer controlled machines, distributed design collaboration, and agendas for sustainable, intelligent building. At the same time, it acquaints students with basics of architecture: cultural heritage, history and theory paradigms, social aspects of space creation, and education through interacting.

Examples of modules:
- Design Studio (Algorithmisation of the creative process)
- Advanced CAD Techniques
- History of Space Shaping
- Knowledge Management in Architecture
- Building and Modelling Materials
- Information Processes in Architecture
- Contemporary Theory of Architecture
- 3D Visualisation Techniques
- Digital Fabrication
- Contemporary Urban Planning
- Advanced Visual Communication
- Image Interpretation in Architecture

Graduates profile:
ASK aims to equip young practicing architects with the formative experience required in active participation in the global architectural knowledge society, and critical interpretation of the creative aspects of design and design collaboration, collaborative and interdisciplinary practice of architecture as well as architectural research exploring new design technology and theory.

- private enterprises
- state-owned enterprises
- central government administration authorities
- local government administration authorities
- cooperative, professional administration;
- own business;

M.Sc. Management
(specialisation: Management of Sustainable Enterprise)

Faculty of Management
Duration: 2 years
Starts in: October

MSE is a fulltime graduate programme offered by Faculty of Management. The programme is designed to promote financial responsibility, ecological sustainability and social integrity in businesses and organisations of all types – from start-ups to global corporations. Our graduates are equipped with practical multinational management skills and experience, and are prepared to apply innovative tools in order to fulfil global challenges. MSE is a programme designed to become a bridge between Eastern and Western management ideas and practice. MSE curriculum integrates management of financial, human, and natural capital. The collaborative, project-oriented approach integrates the development of entrepreneurial skills with critical creative thinking and fostering leadership capacities.

Examples of modules:
- Macroeconomics
- Economic Law
- Management Accounting
- Management Visions
- Organization and Management Methods
- Strategic Management
- Modelling of Management Processes
- Logistics
- Market Analysis
- Decision-Making Support Systems
- Business Forecasting and Simulations
- Business Negotiations
- Sustainable Marketing

Graduate profile – job opportunities:
- lower and mid-level managerial positions, financial analysts, members of staff of IT and R&D institutions of any profile of central and local government administration conducting any form of economic activity, self-employment,
- possibility of continuing education at graduate studies level in any social science discipline, such as Management, Economics, Administration, as well as in the area of technical sciences and related disciplines such as Logistics, Management and Production Engineering, National Security.
M.Sc. Biotechnology
(specialisation: Applied Biotechnology)

Faculty of Chemistry

Duration: 1.5 years

Starts in: February

The programme contains a wide range of specialist subjects (modelling of bioprocesses, regulation of biotechnological processes, separation processes in biotechnology, laboratory of technological and biotechnological processes, biotechnology of natural resources, etc.), which, together with bioanalytical and selective subjects (bioanalytics, sensors and biosensors, microbioanalytics) constitute a comprehensive offer for all graduates interested in the field of biotechnology.

Examples of modules:
- Bioinformatics
- Environmental Biotechnology
- Data Treatment in Chemical Analysis for Biotechnology
- Bioreactors
- Clean Technologies
- Biomaterials
- Implantable Medical Devices
- Microbioanalytics
- Separation Processes in Biotechnology
- Sensors and Biosensors

Graduate profile – job opportunities:

Applied Biotechnology programme is focused on education of specialists prepared for employment in many biotechnological branches of industry (e.g. pharmaceutical, food or composting industry). Our graduates can expect to be competent to carry out scientific research in biotechnology laboratories as well as to work at planning or consulting companies.

- Small, medium and large enterprises of the biotechnology industry and related industries.
- Units of research facilities of the biotechnology industry and related industries.
- Research, testing and diagnostic laboratories.
- Design and business units, including companies trading in biotechnology equipment.
- Institutions providing consulting services and disseminating knowledge in the field of chemistry and biotechnology.
ENGLISH B2 CERTIFICATE

Candidates must have good knowledge of English confirmed by:

- a document proving their previous education was conducted fully in English
- or
- one of the recognised English B2 certificates:
 - IELTS Academic — at least 6 points.
 - TOEFL IBT — at least 87 points in Internet-Based Test (iBT)
 - TOEFL CBT — at least 180 points in Computer-Based Test (CBT), supplemented by at least 50 points from Test of Spoken English (TSE)
 - TOEFL PBT — at least 510 points in Paper-Based Test (PBT) supplemented by at least 3.5 points from Test of Written English (TWE) and at least 50 points from Test of Spoken English (TSE)
- ...and many more
 - full list to be found on our website www.students.pw.edu.pl

HOW TO APPLY

The whole application process is run online!

B.Sc. CANDIDATES

DEADLINES FOR APPLICATION:

Middle of July
- for studies starting in October
Middle of December
- for studies starting in February

HOW TO APPLY:

STEP 1: Upload Entry Documents in the Online Application System:
- Passport
- €200 application fee
- Higher Secondary School certificate
- Transcript of records from high school

STEP 2: Complete Online Placement Tests in Mathematics and English

The results enable us to assign you to appropriate study path: fulltime studies or Foundation Year

STEP 3: Wait for the decision of the Faculty

STEP 4: Upload Admission Documents:
- Legalisation/Apostille on your Higher Secondary School certificate
- Eligibility Statement – a document certifying you are entitled to continue education at university level
- an appropriate English B2 certificate
- tuition fee for the first semester of studies

STEP 5: Register personally at the University and start your studies

M.Sc. CANDIDATES

DEADLINES FOR APPLICATION:

Middle of July
- for studies starting in October
Middle of December
- for studies starting in February
For Architecture: end of June

HOW TO APPLY:

STEP 1: Upload Entry Documents in the Online Application System:
- Passport
- €200 application fee
- B.Sc. Diploma
- Transcript of records from B.Sc. studies

STEP 2: Wait for the decision of the Faculty

STEP 3: Upload Admission Documents:
- Legalisation/Apostille on your B.Sc. Diploma
- Eligibility Statement – a document certifying you are entitled to continue education at master level
- an appropriate English B2 certificate
- tuition fee for the first semester of studies

STEP 4: Register personally at the University and start your studies

Please follow our website for more updates at www.students.pw.edu.pl

Need more information about studies in English?

www.students.pw.edu.pl
students@cwm.pw.edu.pl
Language School Offer

Warsaw University of Technology offers intensive courses of English language. They can be attended by candidates who either wish to continue their education at WUT later on or those who would like to learn English and apply to other universities in Poland or abroad.

Summer English Course

Duration: July - September
- 4 or 5 lessons of 45 min a day, five days a week, a total of 240 hours
- course schedule adjusted to the needs of a particular group
- course run by two or more teachers (both Polish and native speakers)
- optionally, at the end of the course students can sign up for International English Language Testing System (IELTS) exam

1 Year

English Preparatory Course for International Students

Duration: October - June
- 4 lessons of 45 min a day, five days a week, a total of 600 hours, divided into 3 separate modules
- course schedule adjusted to the needs of a particular group
- course run by two or more teachers (both Polish and native speakers)
- course ends with Pearson Test of English (PTE) General, an internationally recognised English language assessment exam
- additionally classes of Polish language and culture

Need more information about Language Courses?

www.oja.sjo.pw.edu.pl
oja@sjo.pw.edu.pl
Apart from studies in English, Warsaw University of Technology offers full range of studies in Polish at:

- Faculty of Administration and Social Sciences: www.ans.pw.edu.pl
- Faculty of Architecture: www.arch.pw.edu.pl
- Faculty of Automotive and Construction Machinery Engineering: www.simr.pw.edu.pl
- Faculty of Chemical and Process Engineering: www.ichip.pw.edu.pl
- Faculty of Chemistry: www.ch.pw.edu.pl
- Faculty of Civil Engineering: www.il.pw.edu.pl
- Faculty of Electrical Engineering: www.ee.pw.edu.pl
- Faculty of Electronics and Information Technology: www.elka.pw.edu.pl
- Faculty of Building Services, Hydro and Environmental Engineering: www.is.pw.edu.pl
- Faculty of Geodesy and Cartography: www.gik.pw.edu.pl
- Faculty of Mathematics and Information Science: www.mini.pw.edu.pl
- Faculty of Management: www.wz.pw.edu.pl
- Faculty of Materials Science and Engineering: www.inmat.pw.edu.pl
- Faculty of Mechatronics: www.mchtr.pw.edu.pl
- Faculty of Production Engineering: www.wip.pw.edu.pl
- Faculty of Physics: www.if.pw.edu.pl
- Faculty of Power and Aeronautical Engineering: www.meil.pw.edu.pl
- Faculty of Transport: www.it.pw.edu.pl
- Faculty of Civil Engineering, Mechanics and Petrochemistry: www.pw.plock.pl
- College of Economics and Social Sciences: www.pw.plock.pl

Need more information about studies in Polish? www.students.pw.edu.pl studia@cwm.pw.edu.pl
Are You ready?

Contact us
www.students.pw.edu.pl
students@cwm.pw.edu.pl

International Students Office
Warsaw University of Technology
Main Building room 233
Plac Politechniki 1
00-661 Warszawa

You will

Warsaw University of Technology